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Abstract

In this paper, we obtain an Ecker–Huisken-type result for entire space-like graphs with parallel mean curvature.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In 1914, Bernstein proved that the only entire minimal graph in R3 is a plane. This result was generalized to
Rm+1 for m ≤ 7, and higher dimensions and co-dimensions under various growth conditions, see [7,12,15,16] and
their references. In 1965, Chern [3] showed that the only entire graphic hypersurface in Rm+1 with constant mean
curvature must be minimal. Therefore we have the corresponding Bernstein-type results for constant mean curvature
hypersurfaces. Bernstein-type results for submanifolds in Rm+n with parallel mean curvature were also obtained by
some authors (cf. [8,9] and [6]).

In 1968, Calabi [2] raised a similar problem for extremal hypersurfaces in Lorentz–Minkowski space Rm+1
1 and he

proved that the Bernstein result is true for 2 ≤ m ≤ 5. Later, Cheng and Yau [5] extended Calabi’s result to all m as
follows: The only complete extremal space-like hypersurfaces in Rm+1

1 are space-like hyperplanes. Recently, Jost and
Xin [10] generalized this result to higher co-dimensional case.

On the other hand, it is important to investigate space-like constant mean curvature hypersurfaces in Rm+1
1 , which

have interest in relativity theory (cf. [11]). In [13], Treibergs showed that there are many entire space-like graphs with
constant mean curvature besides hyperboloids. Thus a Chern-type result is no longer true in this case. It is known
that the Gauss map of a constant mean curvature space-like hypersurface M is a harmonic map to hyperbolic space.
Xin [17] got a Bernstein result by assuming the boundedness of the Gauss map. Later, [19] and [4] extended this
result by proving that M must be a space-like hyperplane if its Gauss image lies in a horoball in the hyperbolic
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space. Another natural generalization is to consider a space-like submanifold in pseudo-Euclidean space Rm+n
n with

parallel mean curvature. In [18] the author extended the result in [17] mentioned previously to the case of higher
co-dimensions under the same boundedness assumption on Gauss map.

In this paper, we consider a space-like graphic submanifold M = {(x, f (x)) : x ∈ Rm
} in Rm+n

n with parallel
mean curvature. Since M is space-like, the induced metric (gi j ) = (δi j −

∑n
s=1 f s

xi
f s
x j

) is positive definite. Set

∗Ω =


√√√√det

(
I −

n∑
s=1

f s
xi

f s
x j

)
−1

.

Our main result is the following:

Theorem. Let Mm
= (x, f (x)) be an entire space-like graph in Rm+n

n with parallel mean curvature. If the function
∗Ω has growth

∗Ω = o(r) as r → ∞

where r =

√∑m
i=1 x2

i , then M is a space-like m-plane.

Our strategy is to establish a Chern-type result for an entire space-like graph with parallel mean curvature under
the growth condition of ∗Ω . Then the result follows immediately from [5] and [10]. Notice that the Gauss image of
M is bounded if and only if ∗Ω is bounded. On the other hand, if n = 1, we have

∗Ω =
1√

1 − |∇ f |2
.

Therefore the growth condition of ∗Ω is similar to that one given by Ecker–Husken [7] for minimal graphic
hypersurfaces in Rm+1. The above result may also be regarded as an Ecker–Huisken-type result for space-like graphs
with parallel mean curvature. By calculating the quantity ∗Ω of the hyperboloid, we will see that the growth condition
is optimal. In [6], the author uses a similar method to establish some Bernstein-type results for submanifolds in
Euclidean space with parallel mean curvature.

2. Preliminaries

In this section, we will generalize Chern’s method [3] to our setting. Let Rm+n
n be an (m + n)-dimensional pseudo-

Euclidean space of index n, namely the vector space Rm+n endowed with the metric

( , ) = (dx1)
2
+ · · · + (dxm)2

− (dxm+1)
2
− · · · − (dxm+n)2. (1)

The standard Euclidean metric of Rm+n will be denoted by ( , )E . For a vector v in Rm+n , we will use the notations
|v| and |v|E to denote the norms of v with respect to ( , ) and ( , )E respectively.

Let z : Mm
→ Rm+n

n be a space-like immersion of an oriented m-dimensional manifold into Rm+n
n . We will regard

z as a vector-valued function on M . Choose a local Lorentzian frame field {e1, . . . , em, em+1, . . . , em+n} such that
{em+1, . . . , em+n} is a normal frame field of M . Throughout this paper, we agree with the following indices:

1 ≤ A, B, C . . . ≤ m + n

1 ≤ i, j, k, . . . ≤ m, m + 1 ≤ α, β, γ, . . . ≤ m + n.
(2)

Write

dz =

∑
A

ωAeA

deA =

∑
B

ωABeB .
(3)
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Therefore {ωi } is a dual frame field of {ei } and ωα = 0 on M . The induced Riemannian metric of M is then given by
ds2

M =
∑

i ω2
i . By Cartan’s lemma, we have

ωαi =

∑
k

hαi jω j , hαi j = hα j i (4)

where hαi j are components of the second fundamental form of M in Rm+n
n . The mean curvature vector of M is defined

by

EH =
1
m

∑
α,k

hαkkeα. (5)

If ∇
⊥ EH = 0, M is said to have parallel mean curvature. If EH = 0, M is called an extremal space-like submanifold.

Now we consider a space-like graph M = {(x, f (x)) : x ∈ D ⊂ Rm
} in Rm+n

n with parallel mean curvature EH ,

where D is a compact domain with smooth boundary ∂ D. Obviously H =

√
−( EH , EH) is a nonnegative constant.

Let Ω = dx1
∧ · · · ∧ dxm be the parallel m-form on Rm+n

n and let {a1, . . . , am+n} be an oriented Lorentzian basis
of Rm+n

n such that {ai }
m
i=1 is an oriented orthonormal basis of Rm . If H > 0, we have a global future-directed normal

vector field eH = H−1 EH . Therefore we may define a global m-form on M as follows:

Φ = (m − 1)!

m∑
i=1

d(a1, z) ∧ · · · ∧ d(ai−1, z) ∧ d(ai , eH ) ∧ d(ai+1, z) ∧ · · · ∧ d(am, z). (6)

Clearly Φ is independent of the choice of the oriented orthogonal basis {ai }
m
i=1 in Rm .

For any p ∈ M then the differential of f is a linear map from Rm to Rn . As in [14], we can use singular value
decomposition to find orthonormal bases {ai }

m
i=1 for Rm and {aα}

m+n
α=m+1 for Rm such that

d f (ai ) = λi am+i (7)

for i = 1, . . . , m. Notice that λi = 0 if i > min {m, n}. Then we have

(ai , a j ) = δi j , (ai , aα) = 0, (aα, aβ) = −δαβ .

Therefore we have a Lorentzian basis {eA} at p given byei =
1√

1 − λ2
i

(ai + λi am+i )


i=1,...,m

∈ Tp M (8)

and eα =
1√

1 − λ2
α−m

(aα + λα−maα−m)


m+n

α=m+1

∈ T ⊥
p M. (9)

By definition ∗Ω = Ω(e1, . . . , em), and thus we have

∗Ω =
1√

m∏
i=1

(1 − λ2
i )

. (10)

Lemma 1. Under the above notations, we have

Φ = m!H(∗Ω)ω1
∧ · · · ∧ ωm

where ω1
∧ · · · ∧ ωm is volume form of M.
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Proof. Using (3), (8) and (9), we have from (6) the following:

Φ = (m − 1)!

m∑
i=1

(a1, dz) ∧ · · · ∧ (ai−1, dz) ∧ (ai , deH ) ∧ (ai+1, dz) ∧ · · · ∧ (am, dz)

= (m − 1)!

m∑
i=1

1√
1 − λ2

1

ω1
∧ · · · ∧

1√
1 − λ2

i−1

ωi−1
∧

 −hH
ii√

1 − λ2
i

ωi


∧

1√
1 − λ2

i+1

ωi+1
∧ · · · ∧

1√
1 − λ2

m

ωm

= −(m − 1)!(∗Ω)

(∑
i

hH
ii

)
ω1

∧ · · · ∧ ωm

= m!(∗Ω)Hω1
∧ · · · ∧ ωm

where
∑

i hH
ii = 〈

∑
α hαi i eα, eH 〉 = −m H . This proves the lemma. �

We may write

Φ = (m − 1)!dα (11)

where

α =

∑
i

(−1)i−1(ai , eH )d(a1, z) ∧ · · · ∧ d(ai−1, z) ∧ d(ai+1, z) ∧ · · · ∧ d(am, z). (12)

Applying the Stokes Theorem to (11), we get

m H
∫

M
(∗Ω)ω1

∧ · · · ∧ ωm
=

∫
∂ M

α. (13)

We project z(M) orthogonally into the m-plane spanned by {ai }
m
i=1. If z′(p) is the image point of z(p), p ∈ M ,

under this orthogonal projection, we have

z′
= z +

m+n∑
α=m+1

(aα, z)aα. (14)

Let Ψ be a nonzero differential form on ∂ M = {(x, f (x)) : x ∈ ∂ D}, defined locally. Using this form, the elements
of volume of z′(∂ M), z(∂ M) may be expressed respectively as PΨ , QΨ with P ≥ 0 and Q ≥ 0. Let α = RΨ . We
write

ωi1 ∧ · · · ∧ ωim−1 = pi1,...,im−1Ψ (15)

on ∂ M .
By a direct computation, we have

1
(m − 1)!

dz ∧ · · · ∧ dz︸ ︷︷ ︸
m−1

=
1

(m − 1)!

(∑
ωi1ei1

)
∧ · · · ∧

(∑
ωim−1 eim−1

)
=

∑
i

p1,...,i−1,i+1,...,m(e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ em)Ψ

so that

Q2
=

∑
i

p2
1,...,i−1,i+1,...,m . (16)
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Using (8)–(10), we get:

α =

m∑
i=1

(−1)i−1(ai , eH )(a1, dz) ∧ · · · ∧ (ai−1, dz) ∧ (ai+1, dz) ∧ · · · ∧ (am, dz)

=

m∑
i=1

(−1)i−1(ai , eH )
∏
j 6=i

1√
1 − λ2

j

ω1
∧ · · · ∧ ωi−1

∧ ωi+1
∧ · · · ∧ ωm

=

m∑
i=1

(−1)i−1(ai , eH )p1...i−1,i+1,...,mΨ

= (∗Ω)

m∑
i=1

(−1)iλiξm+i p1...i−1,i+1,...,mΨ (17)

where ξm+k = 〈eH , em+k〉 if k ≤ min {m, n} and ξm+k = 0 if k > min {m, n}. Obviously
∑m

i=1 ξ2
m+i ≤ 1. Since

|d f | < 1, we get from (17) and the Cauchy–Schwarz inequality that

|R| ≤ (∗Ω)Q. (18)

Next, we will show that if M is a space-like hypersurface, there is a nice formula relating the quantities P, Q and
R. When n = 1, (12) is simplified to

α = vp2,...,m (19)

where v = λ1/

√
1 − λ2

1 = λ1(∗Ω); and thus

R2
= v2 p2

2,...,m . (20)

Write a = am+1. Then (14) becomes

x ′
= x + (a, x)a. (21)

From (9) and (10), we easily derive

(a, ei ) = −δi1v, (a, em+1) = −∗Ω (22)

and

a = −ve1 + ∗Ωem+1. (23)

To determine P , we compute 1
(m−1)!

dz′
∧ · · · ∧ dz′︸ ︷︷ ︸

m−1

as follows:

1
(m − 1)!

dz′
∧ · · · ∧ dz′︸ ︷︷ ︸

m−1

=
1

(m − 1)!

{∑
i1

ei1ωi1 − vω1a

}
∧ · · · ∧

∑
im−1

eim−1ωim−1 − vω1a


=

1
(m − 1)!

∑
ωi1 ∧ · · ·ωim−1(ei1 ∧ · · · ∧ eim−1) −

v

(m − 1)!

∑
1≤s≤m−1

ωi1

∧ · · · ∧ ωis−1 ∧ ω1 ∧ ωis+1 ∧ · · · ∧ ωim−1(ei1 ∧ · · · ∧ a ∧ · · · ∧ eim−1)

=
1

(m − 1)!

∑
ωi1 ∧ · · ·ωim−1(ei1 ∧ · · · ∧ eim−1) +

v2

(m − 1)!

∑
1≤s≤m−1

(−1)s−1ω1

∧ ωi1 ∧ · · · ∧ ωis−1 ∧ ωis+1 · · · ∧ ωim−1(ei1 ∧ · · · ∧ e1 ∧ · · · ∧ eim−1)
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−
v ∗ Ω

(m − 1)!

∑
1≤s≤m−1

(−1)s−1ω1 ∧ ωi1 ∧ · · · ∧ ωis−1 ∧ ωis+1 · · · ∧ ωim−1(ei1 ∧ · · · ∧ em+1 ∧ · · · ∧ eim−1).

So the coefficient of Ψ in 1
(m−1)!

dz′
∧ · · · ∧ dz′︸ ︷︷ ︸

m−1

is

∑
i1<···<im−1

pi1...im−1ei1 ∧ · · · ∧ eim−1 + v2
∑

1<i2<···<im−1

p1i2...im−1 e1 ∧ ei2 ∧ · · · ∧ eim−1

− (−1)mv(∗Ω)
∑

i2<···<im−1

p1i2...im−1ei2 ∧ · · · ∧ eim−1 ∧ em+1.

It follows that

P2
=

∑
1<i1<···<im−1

p2
i1...im−1

+ (1 + v2)2
∑

1<i2<···<im−1

p2
1i2...im−1

− v2(∗Ω)2
∑

1<i2<···<im−1

p2
1i2...im−1

=

∑
i1<···<im−1

p2
i1...im−1

+ v2
∑

1<i2<···<im−1

p2
1i2...im−1

=

∑
i1<···<im−1

p2
i1...im−1

+ v2

 ∑
i1<···<im−1

p2
i1...im−1

− p2
2...m


= (1 + v2)Q2

− R2

since (em+1, em+1) = −1 and v2
− (∗Ω)2

= −1. Thus we have

P2
+ R2

= (∗Ω)2 Q2. (24)

3. Bernstein-type theorems

In this section, we take D =
{

x ∈ Rm
:
∑m

i=1 x2
i ≤ r

}
. As before, let

M = {(x, f (x)) : x ∈ D}

be a space-like graph in Rm+n
n with parallel mean curvature.

Lemma 2. On ∂ M, we have

Q ≤ P. (25)

In particular, if n = 1, i.e., M is a space-like hypersurface, then we have

Q ≤

√
(∗Ω)−2 + |d f (ηm)|2 P (26)

where |d f (ηm)| may be regarded as the radial singular value of the map f .

Proof. Choose an orthonormal basis {η1, . . . , ηm} at q ∈ ∂ D in Rm such that ηm is a normal vector of ∂ D. We have
the corresponding tangent vectors of the graph M at (q, f (a))

ξi = (ηi , d f (ηi )), i = 1, . . . , m.

It is easy to see that

|ξ1 ∧ · · · ∧ ξm | = (∗Ω)−1 (27)

and

|ξ1 ∧ · · · ∧ ξm−1| = Q/P. (28)
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Write

ξi = η̃i + d̃ f (ηi )

where η̃i = (ηi , 0) and d̃ f (ηi ) = (0, d f (ηi )). Therefore

|ξi |
2

= |η̃i |
2
E − |d̃ f (ηi )|

2
E = 1 − |d̃ f (ηi )|

2
E ≤ 1

and thus

|ξ1 ∧ · · · ∧ ξm−1| ≤ 1. (29)

From (28) and (29), we have (25).
Now assume that n = 1. Obviously ξi , i = 1, . . . , m − 1, and f̃ (ηm) are tangent to the cylinder

CD =

{
(x1, . . . , xm+n) ∈ Rm+n

:

m∑
i=1

x2
i = r

}
and the horizontal vector η̃m is orthogonal to CD at the point (q, f (q)). It follows that

(∗Ω)−2
= |ξ1 ∧ · · · ∧ ξm |

2

= |ξ1 ∧ · · · ∧ ξm−1 ∧ η̃m + ξ1 ∧ · · · ∧ ξm−1 ∧ d̃ f (ηm)|2

= |ξ1 ∧ · · · ∧ ξm−1 ∧ η̃m |
2
+ |ξ1 ∧ · · · ∧ ξm−1 ∧ d̃ f (ηm)|2

= |ξ1 ∧ · · · ∧ ξm−1 ∧ η̃m |
2
+ |η̃1 ∧ · · · ∧ η̃m−1 ∧ d̃ f (ηm)|2

≥ |ξ1 ∧ · · · ∧ ξm−1|
2
− |d̃ f (ηm)|2E

i.e.,

Q2/P2
= |ξ1 ∧ · · · ∧ ξm−1|

2
≤ (∗Ω)−2

+ |d̃ f (ηm)|2E .

This gives (26). �

We recall the following

Theorem A ([5,10]). Let M be a space-like m-submanifold in Rm+n
n with parallel mean curvature. Assume that M is

closed with respect to the Euclidean topology. Then M is complete with respect to the induced metric from the ambient
space. In particular, if M is a complete extremal space-like m-submanifold in Rm+n

n , then M has to be a space-like
m-plane.

Remark. Obviously, an entire graph is closed with respect to the Euclidean topology. Hence we know that any entire
extremal space-like graph must be a space-like m-plane.

Theorem 1. Let Mm
= (x, f (x)) be an entire space-like graph in Rm+n

n with parallel mean curvature. If ∗Ω has the
following growth

∗Ω = o(r) as r → ∞ (30)

where r =

√∑m
i=1 x2

i , then M is a space-like m-plane.

Proof. Let Mr = {(x, f (x)) : x ∈ Dr ⊆ Rm}, where Dr denotes the closed ball of radius r centered at the origin in
Rm . From (13), (18) and Lemma 2, we have

m H
∫

Mr

(∗Ω)ω1
∧ · · · ∧ ωm

≤

∫
∂ Mr

RΨ

≤

∫
∂ Mr

∗Ω PΨ

≤ sup
∂ Dr

{∗Ω}Vol(∂ Dr )
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i.e.,

m HVol(Dr ) ≤ sup
∂ Dr

{∗Ω}Vol(∂ Dr ).

Thus

H ≤ C

sup
∂ Dr

{∗Ω}

r

where C is a universal constant. Let r → ∞. It follows that H ≡ 0. Hence we may complete the proof by Theorem A.
�

For space-like hypersurfaces, we may give a more delicate growth condition to ensure the above result.

Proposition 2. Let Mm
= (x, f (x)) be an entire space-like hypersurface in Rm+1

1 with constant mean curvature. If

sup
∂ Dr

{|d f (ηm)|E ∗ Ω} = o(r)

where r =

√∑m
i=1 x2

i , then M is a space-like m-plane.

Proof. From (13), (24), (25) and Lemma 2, we have

m H
∫

Mr

(∗Ω)ω1
∧ · · · ∧ ωm

≤

∫
∂ Mr

RΨ

≤

∫
∂ Mr

√
(∗Ω)2 Q2 − P2Ψ

≤

∫
∂ Mr

|d f (ηm)|E (∗Ω)PΨ

≤ sup
∂ Dr

{|d f (ηm)|E ∗ Ω}Vol(∂ Dr ).

By the same argument as in Theorem 1, we prove the proposition. �

Let us consider a typical example of space-like graphs in Rm+1
1 with constant mean curvature.

Example 1. The hyperboloid is defined by

Hm
−1 =

{
(x1, . . . , xn, xn+1) ∈ Rm+1

1 :

m∑
i=1

x2
i − x2

m+1 = −1, xm+1 ≥ 0

}

=

(x, f (x)) : f =

√√√√1 +

m∑
i=1

x2
i , x ∈ Rm

 .

By a direct computation, we have

∗Ω =
1√

1 − |∇ f |2
=

√√√√1 +

m∑
i=1

x2
i = O(r). (31)

From (31), we see that the growth condition in Theorem 1 is optimal.

Theorem B ([19,4]). Let Mm
= (x, f (x)) be a complete space-like hypersurface in Rm+1

1 with constant mean
curvature. If the image of the Gauss map γ : M → Hm(−1) lies in a horoball in Hm(−1), then M must be a
space-like hyperplane.
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It is known that every complete space-like hypersurface in Rm+1
1 is spatially entire (cf. [1]). To compare Theorem 1

with Theorem B, we hope to find the equivalent restriction on the function ∗Ω , if the image of γ lies in a horoball.
Let M = (x, f (x)) be a space-like graphic hypersurface in Rm+1

1 . Its Gauss map γ is given by

γ : M −→ Hm
−1

x 7−→
1√

1 − |∇ f |2
( fx1 , . . . , fxm , 1) = ∗Ω( fx1 , . . . , fxm , 1)

(32)

where Hm
−1 is the hyperboloid endowed with the induced metric from Rm+1

1 . Obviously the Gauss image of M is
bounded in Hm

−1 if and only if ∗Ω is bounded. This also holds true for higher co-dimensional case (cf. [18]).
It is easier to use the upper half-space model Hm of the hyperbolic space for describing horoballs. We consider the

following maps

h1 : Hm
−1 −→ Bm

(x1, . . . , xm, xm+1) 7−→

(
x1

1 + xm+1
, . . . ,

xm

1 + xm+1

)
(33)

and

h2 : Bm
−→ Hm

=
{
(y1, . . . , ym) ∈ Rm

: ym > 0
}

p 7−→ 2
p − p0

|p − p0|
2 − (0, . . . , 0, 1)

(34)

where p0 = (0, . . . ,−1) and Hm is endowed with the metric g = y−2
m (dy2

1 + · · · + dy2
m). The set

{(y1, . . . , ym) ∈ Hm
: ym > c > 0} for any positive constant c is a horoball in Hm . It is known that h2 ◦ h1 : Hm

−1 →

Hm is an isomorphism. From (32)–(34), we may get the mth component of h2 ◦ h1 ◦ γ as follows:

(h2 ◦ h1 ◦ γ )m =
1

(1 + fxm ) ∗ Ω
.

So the condition ym > c > 0 is equivalent to

(1 + fxm ) ∗ Ω <
1
c
. (35)

Note that fxm may be replaced by any fxi or v( f ) which denotes the derivative in any fixed unit direction v in Rm .
Obviously, if there exists a sequence of points {pk} such that ∗Ω(pk) → ∞, then ( fxm )(pk) → −1. Therefore (35)
implies that all ‘bad singular directions’ approach one direction, i.e., ∂/∂xm .

Since ∗Ω = (
√

1 − |∇ f |2)−1, we see that the growth condition in Theorem 1 is very much like that one given by
Ecker–Huisken in [7] for a minimal graphic hypersurface in the Euclidean space Rm+1. Hence Theorem 1 may be
regarded as an Ecker–Huisken-type result.
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